Vollenkle, H. (1980). Z. Kristallogr. 153, 131-139.
Vollenkle, H. \& Wittman, A. (1968a). Monatsh. Chem. 99, 244-250.
Vollenkle, H. \& Wittman, A. (1968b). Monatsh. Chem. 99, 251-254.
Vollenkle, H. \& Wittman, A. (1969). Z. Kristallogr. 128, 66-71.

Vollenkle, H. \& Wittman, A. (1970). Monatsh. Chem. 101, 46-56.
Vollenkle, H. \& Wittman, A. (1971). Monatsh. Chem. 102, 361-372.
West, A. R. \& Blake, A. J. (1976). J. Mater. Sci. 11, 801-808.
Wittman, A. \& Modern, E. (1965). Monatsh. Chem. 96, 581-582.

Acta Cryst. (1990). C46, 2026-2028

Crystal Chemistry of cyclo-Hexaphosphates. VIII. Structure of Hydroxylammonium cyclo-Hexaphosphate Tetrahydrate

By A. Durif and M. T. Averbuch-Pouchot
Laboratoire de Cristallographie, associé à l'Université J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 18 April 1989; accepted 2 March 1990)

Abstract

NH}_{3} \mathrm{OH}\right)_{6} \mathrm{P}_{6} \mathrm{O}_{18} .4 \mathrm{H}_{2} \mathrm{O}, M_{r}=750 \cdot 11\), triclinic, $\quad P \overline{1}, \quad a=10.365(5), \quad b=9.278$ (4), $\quad c=$ 7.280 (3) $\AA, \quad \alpha=108.39$ (5),$\quad \beta=100.30$ (5),$\quad \gamma=$ $96.02(5)^{\circ}, V=643.8 \AA^{3}, Z=1, D_{x}=1.934 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.7107 \AA, \mu=0.553 \mathrm{~mm}^{-1}, \quad F(000)=$ $388, T=298 \mathrm{~K}$, final $R=0.028$ for 4750 reflections. The centrosymmetric $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion is located at the centre of the unit cell. Three crystallographically independent hydroxylammonium groups co-exist in the atomic arrangement. The three-dimensional hydrogen-bond network is described.

Introduction. Investigation of organic cation-cyclo-hexaphosphates has been recently initiated by the characterization of the tris(ethylenediammonium) cyclo-hexaphosphate, $\quad\left(\mathrm{NH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}\right)_{3}{ }^{-}$ $\mathrm{P}_{6} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Durif \& Averbuch-Pouchot, 1989). In the present work we describe the preparation and crystal structure of a second example for such compounds, the hydroxylammonium cyclohexaphosphate tetrahydrate, $\left(\mathrm{NH}_{3} \mathrm{OH}\right)_{6} \mathrm{P}_{6} \mathrm{O}_{18} .4 \mathrm{H}_{2} \mathrm{O}$.

Experimental. Crystals of the title compound have been prepared by using a metathesis reaction similar to that described by Boulle (1938) for the preparation of water soluble cyclo-triphosphates. Here the starting material is $\mathrm{Ag}_{6} \mathrm{P}_{6} \mathrm{O}_{18} \cdot \mathrm{H}_{2} \mathrm{O}$ recently characterized by Averbuch-Pouchot (1989). Schematically the reaction is:

$$
\begin{aligned}
\mathrm{Ag}_{6} \mathrm{P}_{6} \mathrm{O}_{18}+6\left(\mathrm{OH}-\mathrm{NH}_{3}\right) \mathrm{Cl} \rightarrow\left(\mathrm{OH}-\mathrm{NH}_{3}\right)_{6} & \mathrm{P}_{6} \mathrm{O}_{18} \\
& +6 \mathrm{AgCl}
\end{aligned}
$$

Crystals obtained by slow evaporation of an aqueous solution at room temperature have various morphologies: stout triclinic prisms or thick diamond-like plates. The title compound is stable at

0108-2701/90/112026-03\$03.00
room temperature. Crystal size: $0.40 \times 0.40 \times$ 0.35 mm . Density not measured. Philips PW1 100 diffractometer, graphite monochromator. 19 reflections ($12.0<\theta<18.0^{\circ}$) for refining unit-cell dimensions. ω scan, scan width $1 \cdot 20^{\circ}$, scan speed $0.02^{\circ} \mathrm{s}^{-1}$. Total background measuring time 6 s .5532 reflections collected $\left(3<\theta<35^{\circ}\right), \pm h, \pm k, l, h_{\max }=16$, $k_{\max }=14, \quad l_{\max }=11 . \quad \operatorname{Sin} \theta / \lambda=0.81 \AA^{-1} . \quad$ Two orientation and intensity control reflections ($\overline{7} 01$ and $70 \overline{1})$ measured every four hours without any significant variation. 5169 reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.008$). Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods (MULTAN78, Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). H atoms located by difference Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F), isotropic for H atoms. Unit weights. Final refinements with 4750 reflections corresponding to $I>4 \sigma_{r}$. Final $R=0.028(w R=0.033)$, $S=0.438$, max. $\Delta / \sigma=0.07$, max. peak height in the final difference Fourier synthesis $=0.425 \mathrm{e}^{\AA^{-3}}$. Secondary extinction not refined. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B). Enraf-Nonius (1977) SDP used for all calculations, on a MicroVAX II computer.

Discussion. Table 1 reports the final atomic coordinates.*

[^0] © 1990 International Union of Crystallography

Table 1. Final atomic coordinates and B_{eq} for non- H atoms: e.s.d.'s are given in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{P}(1)$	0.28199 (3)	0.49585 (3)	0.39028 (4)	1-103 (4)
$\mathbf{P}(2)$	$0 \cdot 40646$ (3)	0.76239 (3)	0.73136 (4)	0.995 (4)
$\mathrm{P}(3)$	$0 \cdot 30424$ (3)	0.17000 (3)	0.22317 (4)	1.004 (4)
O(L12)	0.39626 (9)	0.58996 (9)	0.5839 (1)	1.63 (1)
O(L13)	$0 \cdot 29873$ (9)	0.32754 (9)	0.3920 (1)	1.40 (1)
O(E11)	0.15037 (8)	0.5286 (1)	0.4293 (1)	1.72 (1)
$\mathrm{O}(\mathrm{E} 12)$	0.31926 (9)	0.5197 (1)	0.2119 (1)	1.78 (1)
$\mathrm{O}(\mathrm{E} 21)$	$0 \cdot 37873$ (9)	0.86386 (9)	0.6122 (1)	1.60 (1)
$\mathrm{O}(\mathrm{E22})$	$0 \cdot 66977$ (8)	0.2377 (1)	0.1145 (1)	1.78 (2)
O(L23)	0.55982 (8)	0.79580 (9)	0.8421 (1)	$1 \cdot 28$ (1)
O(E31)	$0 \cdot 31287$ (9)	0.05327 (9)	0.3234 (1)	1.62 (1)
O(E32)	0.19463 (9)	0.1420 (1)	0.0484 (1)	1.78 (2)
$\mathrm{N}(1)$	0.5208 (1)	0.1704 (1)	0.7353 (1)	1.65 (2)
$\mathrm{O}(1)$	0.5450 (1)	0.7016 (1)	0.2345 (2)	$2 \cdot 25$ (2)
$\mathrm{N}(2)$	0.0896 (1)	0.8220 (1)	0.4192 (2)	1.77 (2)
$\mathrm{O}(2)$	$0 \cdot 1267$ (1)	0.8206 (1)	0.2420 (1)	2.45 (2)
N(3)	0.9068 (1)	0.4123 (1)	0.1395 (2)	1.73 (2)
$\mathrm{O}(3)$	0.8804 (1)	0.5498 (1)	0.1089 (2)	2.63 (2)
$\mathrm{O}(\mathrm{W} 1)$	$0 \cdot 1757$ (1)	$0 \cdot 1324$ (1)	0.6666 (1)	2.06 (2)
$\mathrm{O}(W 2)$	0.9599 (1)	0.1501 (1)	0.2108 (2)	2.45 (2)

Fig. 1. Projection along the c axis of the atomic arrangement of $\left(\mathrm{OH}-\mathrm{NH}_{3}\right)_{6} \mathrm{P}_{6} \mathrm{O}_{18} .4 \mathrm{H}_{2} \mathrm{O}$. The H atoms have been omitted for clarity.

Table 2. Main interatomic distances (\AA) and bond angles ${ }^{\circ}$) in the atomic arrangement of $\left(\mathrm{HO}-\mathrm{NH}_{3}\right)_{6}$ $\mathrm{P}_{6} \mathrm{O}_{18} .4 \mathrm{H}_{2} \mathrm{O}$: e.s.d.'s are given in parentheses

$\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron						
$\mathrm{P}(1)$	O(L12)	O(L13)			$\mathrm{O}(E 12)$	
O(L12)	1.600 (1)	2.395 (2)		0 (2)	2.530 (2)	
O(L13)	$97 \cdot 16$ (7)	1.593 (1)		0 (2)	2.537 (2)	
O(E11)	109.48 (8)	109.88 (8)		5 (1)	2.552 (2)	
O(El2)	109.71 (8)	110.61 (8)		01 (9)	1.492 (1)	
$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron						
$\mathrm{P}(1)$	O(L12)	O(L13)			$\mathrm{O}(E 12)$	
O(L12)	1.601 (1)	2.513 (2)	2.53	0 (2)	2.443 (2)	
$\mathrm{O}(\mathrm{E} 21)$	108.97 (8)	1.485 (1)		8 (2)	2.552 (2)	
$\mathrm{O}(\mathrm{E} 22)$	$110 \cdot 11$ (8)	118.99 (9)		4 (1)	2.457 (2)	
O(L23)	99.61 (7)	111.73 (7)	105	67 (7)	$\underline{1.598(1)}$	
$\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron						
$\mathrm{P}(1)$	$\mathrm{O}(\mathrm{LL3})$	O(L23)	O		$\mathrm{O}(\mathrm{E} 32)$	
O(L13)	1.600 (1)	2.443 (2)	2.45	(2)	2.512 (2)	
O(L23)	$104 \cdot 34$ (7)	1.597 (1)		9 (2)	2.474 (2)	
O(E31)	$105 \cdot 63$ (7)	110.17 (8)		(1)	2.561 (2)	
$\mathrm{O}(\mathrm{E} 32)$	$109 \cdot 27$ (8)	$106 \cdot 98$ (7)		46 (8)	$1 \cdot 480$ (1)	
$\mathrm{P}(1)-\mathrm{P}(2) \quad 2.8734$ (6)			$\mathrm{P}(2)-\mathrm{P}(3)$	$2 \cdot 9349$ (6)		
$\mathrm{P}(1)-\mathrm{P}(3) \quad 2.9324$ (6)						
$\mathrm{P}(1)-\mathrm{O}(\mathrm{L} 12)-\mathrm{P}(2)$		7 (9)	$\mathrm{P}(2)-\mathrm{P}(1)$	P(3) 13	38.95 (2)	
$\xrightarrow[\mathrm{P}(1)-\mathrm{O}(213)-\mathrm{P}(3)]{ }$		1 (9)	$\mathrm{P}(1)-\mathrm{P}(2)$	P(3) 112	$12 \cdot 46$ (2)	
$\mathrm{P}(2)-\mathrm{O}(\mathrm{L} 23)-\mathrm{P}(3)$		1 (8)	$\mathrm{P}(1)-\mathrm{P}(3)$	P(2)	$93 \cdot 48$ (2)	
$\begin{aligned} & \mathrm{N}(1)-\mathrm{O}(1) \\ & \mathrm{N}(2)-\mathrm{O}(2) \end{aligned}$	$1 \cdot 408$ (2)		$\mathrm{N}(3)-\mathrm{O}(3)$	$1 \cdot 408$ (2)		
	$1 \cdot 407$ (2)					
$\mathrm{N}(\mathrm{O})-\mathrm{H} \cdots \mathrm{O}$		$\mathrm{N}(\mathrm{O})-\mathrm{H}$			$\mathrm{N}(\mathrm{O})-$	
		H‥O	$\mathrm{N}(\mathrm{O})-\mathrm{O}$	H \cdots		
$\mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(E 12)$			0.85 (4)	1.84 (4)	$2 \cdot 685$ (2)	171 (4)
$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{O}(\mathrm{E} 31)$		0.73 (4)	1.85 (4)	2.578 (2)	170 (4)	
$\mathrm{O}(3)-\mathrm{H}(\mathrm{O} 3) \cdots \mathrm{O}(E 12)$		0.86 (4)	1.85 (4)	2.682 (2)	164 (4)	
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N} 1) \cdots \mathrm{O}(E 21)$		0.89 (4)	1.95 (4)	$2 \cdot 844$ (2)	175 (4)	
$\underset{\mathrm{N}(1)-\mathrm{H}(2 \mathrm{~N} 1) \cdots \mathrm{O}(222)}{\mathrm{N}(1)-\mathrm{H}(3 \mathrm{~N} 1) \cdots \mathrm{O}(E 21)}$		0.89 (3)	1.88 (3)	2.753 (2)	166 (3)	
		0.91 (3)	1.98 (3)	2.846 (2)	159 (3)	
$\mathrm{N}(2)-\mathrm{H}(1 \mathrm{~N} 2) \cdots \mathrm{O}(E 11)$		0.84 (3)	2.05 (3)	2.878 (2)	168 (3)	
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N} 2) \cdots \mathrm{O}(W)$		0.87 (4)	1.99 (4)	2.815 (2)	157 (3)	
$\mathrm{N}(2)-\mathrm{H}(3 \mathrm{~N} 2) \cdots \mathrm{O}(W)$		0.87 (4)	1.97 (4)	2.819 (2)	165 (3)	
$\mathrm{N}(3)-\mathrm{H}(1 \mathrm{~N} 3) \cdots \mathrm{O}\left(\mathrm{E} 22^{\text {) }}\right.$		0.89 (4)	1.88 (4)	2.741 (2)	162 (4)	
$\mathrm{N}(3)-\mathrm{H}(2 \mathrm{~N} 3) \cdots \mathrm{O}(2)$		0.90 (4)	2.12 (4)	2.866 (2)	139 (3)	
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N} 3) \cdots \mathrm{O}(E 11)$		0.88 (4)	1.98 (4)	$2 \cdot 842$ (2)	165 (4)	
$\underset{\mathrm{O}}{\mathrm{O}}(W 1)-\mathrm{H}(1-1) \cdots \mathrm{O}(E 32)$		0.77 (4)	1.99 (4)	2.724 (2)	162 (4)	
		0.72 (5)	2.40 (5)	2.982 (2)	138 (5)	
		0.87 (5)	2.04 (5)	2.873 (2)	160 (5)	
$\mathrm{O}(W 2)-\mathrm{H}(2 W 2) \cdots \mathrm{O}(E 32)$		0.85 (5)	2.04 (5)	2.887 (2)	178 (4)	
$\mathrm{H}(1 W 1)-\mathrm{O}(W)-\mathrm{H}(2 W 1) 111(5) \quad \mathrm{H}$			$\mathrm{H}(1 W 2)-\mathrm{O}(W 2)-\mathrm{H}\left(2 W^{2}\right) 109$ (4)			

The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion develops around the inversion centre located in $\frac{1}{2}, 2, \frac{1}{2}$ and so is built by only three independent PO_{4} tetrahedra. As is commonly observed for $\mathrm{P}_{6} \mathrm{O}_{18}$ anions with $\overline{1}$ internal symmetry the ring is significantly distorted. The $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles vary between 93.48 (2) and $138.95(2)^{\circ}$. In spite of this distortion, the local arrangement observed for the PO_{4} tetrahedra ($\mathrm{P}-\mathrm{O}$ distances and $\mathrm{P}-\mathrm{O}-\mathrm{P}$ or $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles as well as $\mathrm{P}-\mathrm{P}$ distances) are in accordance with values generally observed in condensed phosphoric anions. The main geometrical features of this ring are reported in Table 2.

Three crystallographically independent hydroxylammonium groups are present in this atomic arrangement with various orientations. One of this group made by $\mathrm{O}(2)$ and $\mathrm{N}(2)$ is almost parallel to the \mathbf{c} direction while the two remaining ones are located in $(00 z)$ planes. The $\mathrm{O}-\mathrm{N}$ distances observed in these three independent groups are identical within the experimental errors, $1 \cdot 407(2)$ and 1.408 (2) Å.

The three-dimensional network of hydrogen bonds interconnecting the components of this atomic arrangement is described in Table 2. As is usual in compounds involving a condensed phosphoric anion
the bonding O atoms $[\mathrm{O}(L)]$ do not take part in such a network.

Fig. 1 depicts a projection of this structure along the c axis. The drawing has been produced using the program STRUPLO (Fischer, 1985).

References

Averbuch-Роuchot, M. T. (1989). Z. Kristallogr. To be published.

Boulle, A. (1938). C. R. Acad. Sci. 206, 517-519.
Durif, A. \& Averbuch-Pouchot, M. T. (1989). Acta Cryst. C45, 1884-1887.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 2028-2030

$\mathbf{B a}_{3} \mathrm{CaCuSi}_{6} \mathrm{O}_{\mathbf{1 7}}$: A New $\left.\left\{\mathbf{I B}, \mathbf{1}_{\infty}^{1}\right\}\right\}\left[{ }^{4} \mathrm{Si}_{6} \mathbf{O}_{\mathbf{1 7}}\right]$ Chain Silicate

By R. J. Angel,* N. L. Ross,* L. W. Finger and R. M. Hazen
Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St NW, Washington, DC 20008, USA

(Received 30 January 1990; accepted 15 March 1990)

Abstract

Tribarium calcium copper hexasilicate, $\mathrm{Ba}_{3} \mathrm{CaCuSi}_{6} \mathrm{O}_{17}$ (ideal stoichiometry), $M_{r}=956 \cdot 12$, orthorhombic, $\quad B 2 \mathrm{mb}$ [symmetry operators $(0,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}\right)+x, y, z ; \quad x,-y,-z ; \quad x, \frac{1}{2}-y, z ; \quad x, \frac{1}{2}+$ $y,-z], \quad a=14 \cdot 405(2), \quad b=16 \cdot 077(2), \quad c=$ $7.088(2) \AA, \quad V=1641 \cdot 5(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $3.87 \mathrm{~g} \mathrm{~cm}^{-1}, \lambda($ Мo $K \alpha)=0.7093 \AA, \mu=92.2 \mathrm{~cm}^{-1}$, room temperature, $F(000)=1748, R=0.052, w R=$ 0.050 for 684 observed reflections. Crystals were formed as a by-product of the synthesis of $\mathrm{Tl}-\mathrm{Cu}-$ $\mathrm{Ca}-\mathrm{Ba}$ superconductors. The structure consists of SiO_{4} tetrahedra which share corners to form distorted six-membered rings which in turn are linked by two corners to other rings to form chains of six-membered rings. The overall silicate anion topology is $\left\{1 \mathrm{~B}, 1_{\infty}^{1}\right\}\left[{ }^{4} \mathrm{Si}_{6} \mathrm{O}_{17}\right]$ [in the notation of Liebau (1985). Structural Chemistry of Silicates. Berlin:Springer-Verlag]. Calcium and barium sites are eight coordinated, and the copper is in squareplanar coordination.

Introduction. Hazen, Finger, Angel, Prewitt, Ross, Hadidiacos, Heaney, Veblen, Sheng, Ali \& Hermann (1988) described the crystallography of a number of superconducting phases in the $\mathrm{Tl}-\mathrm{Ba}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system originally synthesized by Sheng \& Hermann ($1988 a, b$). These syntheses were carried out by annealing the experimental charge in a silica container, and in addition to the various superconducting phases found in the bulk of the sample,

[^1]reaction between the charge and the container produced a number of brilliantly coloured transparent phases. At least two of these were novel silicates of barium and copper. The structure of $\mathrm{BaCuSi}_{2} \mathrm{O}_{6}$, recently reported by Finger, Hazen \& Hemley (1989), contains four-membered rings of silicate tetrahedra not connected into a framework by other tetrahedral sites. The structure of the second silicate, present as only a few minute multiple crystals, is described here.

Experimental. The largest clear, turquoise-coloured crystal from the experimental charge supplied by Sheng \& Hermann ($1988 a, b$) was selected for diffraction experiments. Approximately 20% of the volume of this crystal (approximate dimensions 0.04×0.04 $\times 0.015 \mathrm{~mm}$) was a second individual, misoriented by about 4° from the parent crystal. Preliminary experiments indicated that reflections with $h+l$ odd in $h k l$ and k odd in $h k 0$ were systematically absent. Data were collected with a Rigaku AFC-5 goniometer equipped with a rotating anode generator providing Mo Ka radiation via a graphite monochromator out to $(\sin \theta) / \lambda=0.7 \AA^{-1}$, with $-20<h<20,0<k<$ 22, $0<l<9$, together with their Friedel pairs (four asymmetric units). The $240,20 \overline{2}$ and 042 reflections were monitored as intensity and orientation standards every 150 reflections; their intensities varied randomly by up to 5% from their means. No correction was made to the measured intensities for this variation, but the weights assigned in the leastsquares procedures were modified appropriately (see below). A total of 4955 symmetry-allowed reflections were measured, of which 2724 were observed at $I>$ © 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library
 Document Supply Centre as Supplementary Publication No. SUP H-atom parameters have been deposited with the British Library
 Document Supply Centre as Supplementary Publication No. SUP 53118 (42 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Present address: Department of Geological Sciences, University College London, Gower St, London, WCIE 6BT.

